
Superficial – the concepts July 2006 Page 1 of 16

Superficial – the concepts

Superficial is a fresh approach to the design and coding of interactive applications,
in particular those with graphical user interfaces (GUIs).

Superficial

• provides a conceptual framework for describing a user interface and how it
exposes application content;

• enables a strong separation of concerns that simplifies development,
debugging and maintenance of GUI applications;

• largely eliminates the complexities of data binding and event listening that
arise with conventional approaches to GUI design;

• has been implemented in the Java programming language and could probably
be implemented in any object-oriented language.

This paper gives a detailed account of the Superficial approach, aimed primarily at
readers considering development of production-quality code based on Superficial.

The concepts defined by Superficial are introduced under the following headings:

• The metaphor of surface provides a basis for describing any interactive
application.

• The analysis applies the surface metaphor to GUI applications in particular,
abstracting the widgets of a GUI surface into facets connected to targets within
the application.

• The architecture turns the analysis to practical use by defining a mediating
tree of targeters that ensures facets are always connected to appropriate targets.

• The mechanism uses the architecture to define a build sequence that
assembles a surface attached to a targeter tree; and a retargeting sequence that
maintains consistency between surface and application.

Practical implementation of these concepts in a language such as Java requires
further design decisions and completing components; production use of
Superficial could be based on further development of the Facets demonstration
implementation.

At the end of this paper there is a glossary of Superficial terminology

Interaction implies surface – the metaphor

The cornerstone of the Superficial approach is the metaphor of surface.

Applying the metaphor – the analysis

Superficial – the concepts July 2006 Page 2 of 16

A software application can be defined as comprising content from a problem
domain together with logic about how that content can change. To interact with
an application the user must be able to access its content, request changes subject
to the constraints of the logic, and access the results of such changes. Since the
user is outside the application and the content is on the inside, the means by
which the user interacts with the application can helpfully be thought of as its
surface.

This view of interaction resembles in some respects the Model-View-Controller
paradigm (MVC). A surface is indeed most clearly defined as an application
element that exposes content to view and control by the user, where view enables
the user to determine the state of the content, and control enables them to modify
that state.

However the surface metaphor differs from MVC in important ways. Subsuming
view and control as subordinate concepts, it is readily applied to GUI applications
where the majority of widgets provide both functions. It also defines a distinct
problem domain for interactive applications themselves: the building and
management of their surfaces.

Superficial takes a broad view of the model, treating it as coextensive with the
complete application. This provides for the common case where some elements
of a GUI surface expose other elements to user view and control: for instance, a
pull-down menu that changes window focus or layout.

Applying the metaphor – the analysis

For the surface metaphor to apply usefully to GUI applications, a way must be
found to analyse their surfaces.

Such an analysis must address two major issues. Firstly, a GUI surface is
constructed from what can be a large number of widgets. Many of these widgets
define purely decorative features such as labels or borders, which provide neither
view nor control of content but must still be specified as part of the surface.

The second difficulty is that the logical structure of an application rarely maps
directly onto the widget structure of its GUI surface. Several widgets may expose
the same application element to view and control; or the element exposed may
need to be replaced by another, for instance following a change in content
selection.

How Superficial deals with the second difficulty is described later; the first is
handled by analysing a GUI surface into elements that abstract away its concrete
widgets, while still defining its visual layout.

Superficial calls such abstract surface elements facets, expressing their character as
discrete elements of the complete surface. Each facet manages one or more
widgets that form a visual and logical group; a GUI surface can thus be regarded
as comprised of an outer layer of concrete widgets, managed by an inner layer of

Applying the metaphor – the analysis

Superficial – the concepts July 2006 Page 3 of 16

abstract facets. The widgets of the outer layer are visible to the user but invisible
to the application; their managing facets in the inner layer are visible to the
application but not literally speaking to the user.

However since the visual and logical layout inferred by the user from the widget
layer should resemble closely that defined by the facet layer, the facet layer largely
defines how the surface will be perceived by the user.

The facets of a surface can be divided into two categories:

• simple facets which expose primitive data values, actions and fixed content
structures in the application;

• viewer facets which expose looser (and usually more complex) content
structures.

Simple facets manage the widgets of menus, tool bars, dialogs etc; viewer facets
are used for the content area of most applications as well as for dialogs such as file
finders and property editors.

Simple facets

Simple facets, of which the simplest useful example is probably the checkbox,
share a number of features. A simple facet

• exposes to user view and control a target in the application: usually a single data
value roughly equivalent to a language primitive, sometimes an action that the
application can perform.

• is often grouped with other related facets: an XY coordinate pair for instance,
or file manipulation actions.

• is identified visually by some combination of text labels and graphics such as
icons or borders.

• is laid out within containers such as panels, menus, tool bars etc that may not
themselves have targets.

• though it exposes a simple value in data terms, may nonetheless have complex
variants – for example the tri-state checkbox.

Perhaps surprisingly, a simple facet can always be defined in terms of a very
limited set of target types, for which Superficial coins a few more terms.

• Checkboxes, toggle buttons and their menu equivalents expose toggling targets
representing Boolean values.

• Sliders, some formatted text fields and nudging button pairs expose numeric
targets.

• Plain and formatted text fields expose textual targets, as do non-decorative
labels such as status lines.

Applying the metaphor – the analysis

Superficial – the concepts July 2006 Page 4 of 16

• Single-selection lists and dropdowns expose indexing targets which are indexes
into lists; as do iterating button pairs, some groups of menu items and (less
obviously) radio-button groups.

• Buttons and menu items not directly connected to data values expose trigger
targets that initiate an application process.

More elaborate simple facets can be treated as exposing groupings of these types.
A spinner combines a formatted text field with iterating buttons to expose a
numeric grouped with an indexing. A multi-selection list exposes a group of
togglings, one for each item in the list.

Describing facets in terms of their targets can shed light on their functional
nature. For example, an editable combo or other combination of list and text field
can be analysed as exposing a textual grouped with an indexing, behaving in
different ways depending on the functional relationship between the two. The
textual may be editable

• intermittently, to rename items in the indexing;

• at all times, but only as an aid to navigating the indexing;

• freely, with the indexing providing a suggestion list.

Simple facets can be grouped further as required to expose any target that has a
fixed structure. This means that a surface that exposes content comprised of one
or more fixed data structures can consist purely of groups of simple facets; such
surfaces are frequently used for an application dialogs.

Viewer facets

All content is composed ultimately of fixed structures of primitive data values.
However the content of many applications has a looser overall structure which
must be exposed by means of viewer facets.

While based on the same concepts of facet and target, a viewer facet differs
substantially from a simple facet. A viewer facet

• enables the user to view and manipulate avatars depicting its loosely structured
content target.

• is not grouped with others like a simple facet, though a content area may
contain several viewers.

• will often be itself controlled (activated/shown/hidden) by other facets in
menus or tool bars.

• usually provides additional direct control of its target from the keyboard, and
from facets in a context-sensitive menu and elsewhere in the surface.

There are a number of standard avatar styles such as tree, table and text flow, and
even a complex surface may need only some combination of viewers with these
avatars. However the set of viewer facets is not more or less closed as for simple

Applying the metaphor – the analysis

Superficial – the concepts July 2006 Page 5 of 16

facets, since many content types require viewers with custom avatars; and even
the avatars of standard viewers are usually configured to suit their content.

Since viewers using arbitrary avatars may expose arbitrary content, it is impractical
to analyse them like simple facets in terms of their target type. Instead Superficial
uses three abstracting types to define what the user interacts with in a viewer:

• the viewer facet itself, managing a viewer widget specified by its avatar style

• the viewable content that the widget is to expose using this avatar style

• the view policy that specifies how the widget should expose the viewable

A further abstraction is needed for the containing facets of viewers, such as panes
and windows. As the container of either a single viewer or other containing areas,
the area naturally forms a hierarchy rooted in the top-level surface window.

Further complications arise when defining the targets associated with viewer
facets. Firstly, the viewer itself really has two targets: the appearance and
behaviour of its avatars depend as much on its view policy as on its viewable
content.

Secondly, the viewable, view and the viewer itself may supply targets in their own
right to other facets. Elements of the current selection within the viewable will
typically be exposed by other facets in the surface. A view may have variable
properties, such as zoom or display of gridlines, that are targeted by other simple
facets. Direct content actions defined for the viewer must be exposed by trigger
facets.

The containing areas for viewers may also be targets for other facets or for the
internal logic of the surface. In particular an area facet must represent to the
application the pane or window that it manages, so that this can be given focus
either programmatically or by user interaction with other facets such as menus;
and so that focus change in the widget surface layer can be relayed by the facet
layer to the application.

The complete surface

The analysis of a GUI surface into simple facets and their groupings, viewer facets
and their containing areas allows Superficial to define clearly the required
characteristics of a complete surface.

The overriding requirement for any surface is consistency of view and control. To
maintain transparency of user interaction, any change in either application
content or the surface itself must be reflected immediately in all facets.

Maintaining view and control consistency in a GUI surface is complicated by the
need to provide for two further surface characteristics:

• multiple facets exposing a single target

• content selection

Applying the metaphor – the analysis

Superficial – the concepts July 2006 Page 6 of 16

For both simple and viewer facets, more than one facet in the surface may expose
the same target in the application. A simple target may be exposed by several
functionally identical sets of simple facets. One set may appear grouped in a
toolbar and another (most probably of different styles) on a sidebar panel; a
further ungrouped set may even be mixed with those exposing other targets in a
menu tree. Viewable content may be the target of several viewer facets, each
displaying different regions and/or different views of the same content.

For view and control consistency to be maintained, all simple facets exposing a
given target must provide the same view and control of that target; and the case of
viewers is once again more complex. Not only must they provide consistent view
and control of what may be different portions of the same content, but user
interaction with one viewer may trigger a change in the view policy of others.

Surfaces must also support selection within the content they expose. The
selection may be defined by simple facets such as navigation buttons providing
traversal of records, or by the user activating a viewer and selecting within the
avatars depicting its content.

Multiple selection may be required. Though not useful in text processing, it can
be necessary for tree or table viewers and is more or less essential for
manipulating graphics. This makes complex demands on the behaviour of all
facets. If the current selection is multiple, even simple facets must be able to
respond either by becoming inactive or by providing appropriate view and control
(such the tri-state checkbox already mentioned).

Whether single or multiple, each selection change will require much of the
surface as a whole to be updated. Both simple and viewer facets must respond to
the new selection; and may also themselves need to be enabled or disabled, shown
or hidden.

The Superficial approach to updating the surface is that any change in the
application which might affect view and control consistency should trigger a
retargeting. During retargeting all facets in the surface are updated either with the
state of their existing targets, or in the case of selection change with that of their
new targets. Because retargeting provides a general means of updating the surface,
it can also be used to bind the surface initially to the application.

It is through retargeting that Superficial handles both the major issues of building
and managing a GUI surface: data binding and event listening. Data binding is
simplified because retargeting ensures that each facet binds its widgets to the latest
state of the content represented by its target. Rather than register piecemeal the
interest of facets in specific events, Superficial assumes that any facet may be
interested in any event, leaving the facet to decide upon retargeting whether or
not to update its widgets..

Such a broad brush approach may appear inefficient, but retargeting and checking
the need for widget update is a very lightweight activity compared to repainting
updated widgets.

From analysis to application – the architecture

Superficial – the concepts July 2006 Page 7 of 16

It is notable how the surface metaphor describes equally well a complete surface
and its composing facets. Whether simple or viewer, each facet behaves in
miniature like the surface as a whole, providing both view and control of the
target that it exposes. Of the simple facets only a textual status line provides view
of its target without control, and no facet provides control without at least some
sort of view. While a simple trigger button or menu item exposes no content, it
nonetheless provides view of the fact that its targeted action exists; and it will
seriously annoy the user if it fails to provide view, by disabling itself, of the
action’s non-availability.

From analysis to application – the architecture

To summarise how Superficial analyses a GUI surface:

1. The surface exposes application content to user view and control.

2. An outer surface layer of GUI widgets is visible to the user, managed by an
inner layer of facets visible to the application.

3. Simple facets expose targets in the application that are data primitives or
actions; groupings of such facets expose fixed content structures; viewer facets
expose loose content structures.

4. Some facets (especially viewers) may be controlled by others.

5. Multiple facets in the surface may expose a single target in the application.

6. Some facets may define content selections to be exposed by the surface as a
whole, including multiple selections; all facets may need to respond to
selection change.

7. Consistency of view and control between facets and targets is maintained by
retargeting the surface on the application.

This analysis should in principle apply to any surface that can be constructed
using GUI widgets. The only surfaces for which this is proven are those of the
Superficial demo applications, but thought experiments suggest that the analysis
holds for surfaces as varied as those of Word, Excel, CorelDRAW and the Eclipse
platform. Readers may wish to test the analysis on an application they use
frequently, or one for which they have coded (or would like to code) a GUI.

The analysis deliberately ignores the question of how the facet layer creates the
concrete GUI layer; this requires a host that can provide a GUI context within
which concrete widgets can be created and laid out.

Targets and trees

Having devised an analysis of GUI surfaces, the next stage is to embody it in an
architecture that enables facets to communicate reliably with their targets in the
application.

From analysis to application – the architecture

Superficial – the concepts July 2006 Page 8 of 16

Rather than connect facets directly to content, Superficial defines abstract target
types based on those defined for facets, and manages communication between
concrete GUI widgets and the application in terms of mediation between facets
and targets.

The following target types are defined:

• A base type with general features such as having a human-readable title,
knowing whether it is enabled or disabled. It can also contain child target
elements: this enables groupings of targets to be constructed to correspond
with groupings of facets, and assembled into complete target trees
representing regions of the application and its content.

• Variants of the base type for use with simple facets as described earlier. These
are facades that allow toggling facets to set flags in the application, numerics to
set values, etc, without direct knowledge of the application elements
represented by their targets.

• A variant that acts as a frame around a discrete application element, allowing
direct access to this element such as is required by viewer facets; child target
elements may represent elements of the frame content and actions on it.

• Variants of the frame target to represent viewable content, viewers and their
containing areas as described earlier.

From these types can be built target trees representing both application content
and the windows, panes and viewers of the surface itself; these trees can be
assembled into a single tree containing targets for all the facets composing the
abstract surface layout.

Such a tree turns out to have a constantly varying structure, because the targets to
be exposed by the surface at any given instant map only partially onto the set of
potential targets in the application. Different viewer, view and viewable trees must
be exposed by the surface as different viewer facets are activated. The selection
tree, typically exposed by more facets than any other, must at a minimum be
adjusted in some way on each selection change, and is in practice most simply
reconstructed from scratch. Even the area target tree may change as windows and
panes are opened and closed.

Mediation between surface and targets

As facets have a fixed relationship to their widgets, so do targets (though they may
themselves be transient) to the content they represent in the application. For this
reason communication between facets and widgets, and between targets and the
application, are details of implementation that need not be considered at the
architectural level.

However the reverse is the case for the retargeting mediation required between
facets and targets. An effective architecture for such mediation is crucial if the
surface metaphor is to be applied successfully to GUI applications.

From analysis to application – the architecture

Superficial – the concepts July 2006 Page 9 of 16

An example of the mediation required between a facet and its target is given once
again by the checkbox. The toggling facet managing a concrete checkbox widget
exposes to user view and control a toggling target, which itself represents a flag of
some sort in the application.

The facet obtains from its target the information necessary to set a suitable label
on its widget, to set the widget’s toggle state and whether it should be enabled or
disabled. If notified by its widget of user input, it can check the new state of the
widget and relay that state to its target, which in turn updates the application flag.

It may be that the facet exposes a target forming part of a selection, so that as the
selection changes, the facet must be retargeted with a new target. This is simple
for the facet, which need only update its checkbox widget with information from
its new target. Once retargeted, the facet can respond to input from its widget by
setting the new target’s state as it did for the previous one.

What is simple for the facet is far from simple for its retargeting mediator, which
has to handle both the transience of the complete target tree and the fact that
many of its members are exposed by multiple facets in the surface.

Much the commonest cause of change in the target tree is that the viewable frame
around the active content updates its selection target tree in response to change
either in selection or in the state of the existing selection. In the simplest case the
mediator must obtain from the latest selection tree the new toggling target to be
exposed by the facet; more complex cases include those where the selection is
multiple or of varying type.

While the toggling facet has just one target at a time, it will very likely share this
with several other facets, each exposing the target with its own widget (possibly
also a checkbox, eqully possibly a toggle button or toggling menu item). The
mediator must know of all facets that are thus multiplexed to its target, so as to
retarget each with the same new target. Only thus can it ensure that each facet
will update its widgets with the correct target information and relay input from
those widgets to the correct target.

The targeter tree

The Superficial architecture handles mediation during retargeting by defining a
targeter type which is in some respects like a facet, in others like a target. A targeter
has four principal features:

1. Like a facet, it is targetable on a member of a target tree.

2. It maintains a list of facets exposing its target, thus resolving the multiplexing
problem described earlier.

3. Like a target, it can contain child elements to match any child elements of its
target.

4. Its type is defined by its potential targets: instances are generally obtained from
such a target during the initial retargeting.

From analysis to application – the architecture

Superficial – the concepts July 2006 Page 10 of 16

During retargeting a targeter can retarget any child elements on the child
elements of its new target, which means that a tree of targeters can retarget itself
and its attached facets on any matching tree of targets.

Since targeters are created from their initial targets, targeter trees can be
dynamically generated from target trees. During initial retargeting the root of any
target tree can be queried for a suitable targeter, which is then retargeted on the
target that created it. The targeter queries its new target for any child elements,
queries these in turn for new targeters to become its own child elements, and
retargets the new elements on the target elements that created them.

The targeter’s new elements repeat this sequence until the complete target tree
has been visited and a matching targeter tree constructed. As surface facets are
created and attached to targeters, each is retargeted on its targeter’s initial target.

In subsequent retargetings each targeter in a tree will generally find that its child
elements match those of its new target. Once targeters with attached facets have
retargeted these on their current targets, the GUI widgets managed by each facet
will expose the latest state of its target and thus of the application element
represented by that target.

As with target trees, the targeter tree connecting facets to their current targets may
vary in response to changes in the target tree; with the important difference that
rather than constantly creating new members, it adjusts its structure by recycling
existing members and their attached facets.

By defining which facets expose which targets, a targeter tree adds logical
structure to the visual structure of a facet tree and connects this mostly permanent
tree to the transient target tree. The key element of a Superficial surface is
therefore its targeter tree, primarily composed of one or more root targeters that
mediate between targets representing content and facets exposing this content to
user view and control.

Surfaces and applications

The simplest possible Superficial application has a single surface, with a targeter
tree that is the single root targeter tree exposing its content.

However most practical applications need multiple surfaces, and the targeter tree
for each surface may contain more than one root targeter. Even if an application
exposes only a single content document at a time, it will almost certainly use
modal dialogs to expose the properties of the current selection or user
preferences. Such dialogs are in effect applets running inside the parent
application, with surfaces independent of the parent surface.

Both application and dialog surfaces may need to expose multiple content. A
multiple-document application must allow the user to open new tabs or windows
on different content. A dialog may have multiple tabs with different content, or
even multiple pages which themselves contain multiple tabs.

From analysis to application – the architecture

Superficial – the concepts July 2006 Page 11 of 16

A surface area tree is often therefore not a single content tree, but a structure of
several such trees. In the case of an application it must be possible to add and
remove content trees from the surface tree root as the user opens and closes
documents; all such trees must share the targeter tree to which are attached the
menu and toolbar facets used to expose their content. The surface tree of a dialog
is by contrast fixed and consists of independent content trees, but these may be in
arbitrary arrangements.

A final complication is that a multi-document application may need to allow
existing content to be exposed in new tabs or windows. Each has its own content
tree, which must share not only a targeter tree but also the existing content.

Superficial deals with these issues by extending the use of area trees to arrange not
just viewers, but complete content trees obtained from contenters which wrap the
content itself (and usually create it from an external source such as a file or
database connection). A contenter can create any number of area trees from its
content; once menu and other facets have been attached to the targeter tree
created dynamically from the first such tree, they can be shared by all content area
trees of that type.

Interaction between elements

Because Superficial integrates an application with its surface purely in terms of
facets, targets, and the mediating targeter tree, the interactions of surface elements
with each other and with the application are very clearly defined.

• A widget in the concrete GUI interacts with its managing facet only to notify
it of input.

• A facet interacts most widely with other elements, needing fairly detailed
knowledge of both its widgets and its target. However only viewer facets
interact directly with the content framed by their targets; the facades provided
by the targets of simple facets shield these facets from direct knowledge of the
content they represent.

• A targeter interacts with both its attached facets and its own target, but
through very narrow interfaces. This makes it relatively simple for targeter
variants to deal with complexities such as multiple selection targets or targets
of varying type.

• A target interacts actively only with the application element it represents: it is
entirely passive with respect to both the targeter and facets of which it is a
target. Even its interaction with the application can be mediated by a separate
coupling object as described later in this paper.

• Finally, application elements need have no knowledge whatsoever that they
are the subject of interaction. Superficial applications can thus be constructed
for content types that make no explicit provision for user interaction.

Architecture in action – the mechanism

Superficial – the concepts July 2006 Page 12 of 16

This strong separation of concerns ensures that applications with Superficial
surfaces are inherently easy to develop, debug and maintain.

Architecture in action – the mechanism

Using the architecture described above, and in particular the capacity of the
dynamically constructed targeter tree to retarget the surface, general-purpose
sequences can be defined for building and retargeting Superficial surfaces. The
sequences below apply to application surfaces; those for dialogs are generally
similar.

Building the surface

In the Facets implementation this sequence may be viewed by setting the debug
trace flag.

1. A viewable frame is created by a contenter around application content
generated from a source such as a file or database connection.

2. For each viewer facet required in the surface, a views target is created which
specifies its display policy.

3. Viewer frames are created each wrapping a views target and the shared
viewable frame, and from these frames a content area tree to represent the
windows and panes that will contain the viewer facets.

4. A suitable layout of viewer and area facets is attached to the content area tree.

5. The content tree is queried for a suitable root targeter, which is retargeted on
the root and constructs from it a content targeter tree.

6. The root targeter queries the content area root for the viewer whose facet will
have the initial focus, asks its viewable to create a selection tree and from this
creates a selection targeter tree. Targeter trees for the active viewer, its views
and the viewable itself are constructed in a similar manner and attached to the
root targeter.

7. Simple facets and their groupings are constructed, attached to the targeter tree,
retargeted and assembled into layouts defining menus and panels.

8. The facet layouts are passed to a GUI host which creates the concrete surface.

Retargeting the surface

In the Facets implementation the results of this sequence can be seen in the
debug graph viewer for the surface, which shows the state of the content tree after
each retargeting.

1. A facet is notified of input by a widget that it manages, and relays the input to
its current target.

Coding with Superficial – implementation

Superficial – the concepts July 2006 Page 13 of 16

2. The target responds by acting on the application element that it represents.

3. The surface root is notified that a retargeting is required (in the Facets
implementation by using the targeter tree as a notification tree).

4. The active content root targeter is retargeted on its area root as before, and
retargets its child targeter trees; in the Facets implementation any selection
target tree is always reconstructed from scratch.

5. Facets are retargeted and update their widgets as required to the state of their
current targets.

Because the build and retargeting sequences are so clearly defined, they can be
simply encapsulated in template classes with callback methods for application
code. This is the approach taken by the Facets implementation.

Coding with Superficial – implementation

The analysis, architecture and mechanism described so far in this paper provide a
basis for practical use of the surface metaphor in the design and coding of GUI
applications. However they leave open a number of design issues:

• Connecting simple targets to the application

• Initiating retargeting

• Allowing for varying target types

Couplers

The Superficial architecture does not specify how simple targets should be
connected to the application elements they represent. The obvious approach is for
each target to have callback methods that relay input to the application and define
its display and behaviour policy; this however has the disadvantage of increased
coupling between surface and application.

To avoid this coupling, each simple target type in the Facets implementation has
an associated coupler type enabling definition of application-specific mechanism
and policy.

Notification

The Superficial mechanism requires that the surface root be notified when
retargeting is required, but does not specify how. As the surface root can be
connected via the targeter tree to all target tree members, the Facets
implementation defines both targets and targeters as potential members of a
notification tree headed by the surface root targeter.

Members of the tree expose a public method to initiate notification, which is
usually called by an exposing facet.

Developing with Superficial – production use

Superficial – the concepts July 2006 Page 14 of 16

Variation in target type

As a result of change in either the selection or the active viewer, a corresponding
change may be required in the targeter at a given position in the targeter tree. This
is handled as follows in the Facets implementation:

1. Each area targeter and content root targeter maintains an internal list of
targeters already created and with attached facets

2. During retargeting, a suitable targeter is either retrieved or created for each
target child of the new target.

3. The new targeter tree is attached as necessary to the parent targeter and its
attached facets to the surface.

Developing with Superficial – production use

In addition to providing a core implementation of the Superficial architecture as
described in this paper, any useful Superficial framework must include
completing components that enable practical applications to be designed and
coded:

1. The types of the core implementation must be extended and partially
specialised, especially those for viewers.

2. Surfaces must be built around targeter trees defined using this extended
architecture

Extensions of types from the viewers and applications frameworks in the
facets.superficial package tree are provided in the Facets implementation by
the facets.app package tree. The facets.facet package tree provides surface
building, currently bound to the Swing widget toolkit.

It is worth noting that while these completing components are conceptually fairly
straightforward, even in the Facets demonstration implementation they comprise
more than four-fifths of the code.

Production use of the Facets implementation in its present state is probably barely
practical, but it could be adapted for such use in a number of different ways.

• The simplest route to production use would be by further development of the
existing completing components, probably specialised for an application
domain. A database application would require specialised viewable and
selection frame targets; a graphics application would need to extend the avatars
framework.

• The existing somewhat ad-hoc surface builder could be replaced by alternative
approaches to defining facets and their widgets and attaching the facets
themselves to the targeter tree; in particular, facet layouts could be defined
entirely in declarative configuration files.

Glossary – Superficial terminology

Superficial – the concepts July 2006 Page 15 of 16

• Though the core Facets implementation is fairly robust, its API and code are
written in the personal idiom of the author rather than with regard to
established coding conventions; readability and robustness might be improved
by a comprehensive review of the code.

Glossary – Superficial terminology

Because Superficial represents a fresh approach to its problem domain, it
unavoidably has its own terminology. Terms defined in this paper are
summarised here.

surface Provides the user of an application with view and control
of its content.

view Enables the user to learn the state of application content;
display policy for a viewer.

control Enables the user to change the state of application
content.

selection Defining a portion of application content to be exposed
by the surface; the portion so exposed.

target Application element to be exposed by the surface; its
representation forming part of a target tree.

targetable Exposes a target directly or indirectly.

facet Targetable in the abstract surface managing widgets in
the concrete surface.

retargeting Updating targetables with appropriate targets so as to
maintain consistency of view and control between
surface and application

simple facet Facet exposing a content primitive or action target.

toggling Target representing a Boolean value.

numeric Target representing a number.

textual Target representing a text value.

indexing Target representing items and an index into them.

trigger Target representing an action.

frame Represents application content while allowing direct
access to such content.

viewer Facet exposing a loose content structure; or target
representing such a facet in the area target tree.

avatar Exposes viewer content to direct view and control

Glossary – Superficial terminology

Superficial – the concepts July 2006 Page 16 of 16

viewable Content exposed by one or more viewers; or frame
around such content and capable of maintaining a
selection tree.

selection tree Represents the current selection.

area Facet containing either a viewer or other areas, manages
a pane or window in the concrete surface; or target
representing the facet.

(content) area tree Represents viewers exposing shared application content.

targeter Mediates between one or more facets and its own target,
forms part of a targeter tree.

(content) root targeter Targeter for the root of a content area tree, with member
targeters targeted on the selection and other target trees.

surface tree Targeter tree for a complete surface, including one or
more content targeter trees

contenter Provides content area trees exposing its wrapped content
and facet layouts for their targeter tree

host The GUI context for a surface

© David M Wright, July 2006

